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ABSTRACT

Short sprint performance is one of the most 
distinguishable and admired physical traits in sports. 
Short sprints have been modeled using the mono-
exponential equation that involves two parameters: 
(1) maximum sprinting speed (MSS) and (2) relative 
acceleration (TAU). The most common methods to 
assess short sprint performance are with a radar 
gun or timing gates. In this paper, we: 1) provide the 
shorts package that can model sprint timing data 
from these two sources; 2) discuss potential issues 
with assessing sprint time (synchronization and flying 
start, respectively); and 3) provide model definitions 
within the shorts package to help alleviate errors 
within the subsequent parameter outcomes.

INTRODUCTION

Short sprint performance is one of the most 
distinguishable and admired physical traits in 
sports. Short sprints, commonly performed in most 
team sports (e.g., soccer, field hockey, handball, 
football, etc.), are defined as maximal running from a 
stand still position over a distance that doesn’t result 
in deceleration at the end. Peak anaerobic power 
is achieved within the first few seconds (<5 s) of 
maximal efforts (Mangine et al. 2014), whereas the 
ability to achieve maximal sprint speed varies based 
on the athlete and their sport. For example, track 
and field sprinters are trained to achieve maximal 
speed later in a race (i.e., 50-60 m) (Ward-Smith 
2001), but team sport athletes have sport-specific 
attributes and reach it much sooner (i.e., 30-40 m)
(Brown, Vescovi, and Vanheest 2004). Regardless 
of the differences in kinematics between athletes, 
evaluating short sprint performance is routinely 
included within a battery of fitness tests for a wide 
range of sports.

The use of force plates is considered the gold 
standard for assessing mechanical properties of 
sprinting; however, there are logistical and financial 
challenges to capturing the profile of an entire sprint 
(Jean-Benoit Morin et al. 2019; Samozino et al. 
2016). Radar and laser technology are frequently 
used laboratory-grade methods (Buchheit et al. 
2014; Edwards et al. 2020; Jiménez-Reyes et 
al. 2018; Marcote-Pequeño et al. 2019) but not 
normally accessible to practitioners working in 
sports. Undoubtedly, the most common method 
available and used to evaluate sprint performance 
are timing gates. Often multiple gates are positioned 
at varying distances to capture split times (e.g., 5, 
10, 20 m), which can now be incorporated into the 
method for determining sprint mechanical properties 
(Jean-Benoit Morin et al. 2019; Samozino et al. 
2016). This approach presents an advantage to 
practitioners who can use the outcomes to describe 
individual differences, quantify the effects of training 
interventions, and better understanding the limiting 
factors of performance.

The shorts package (Jovanović 2021), written in 
the R language (R Core Team 2021), represents an 
open-source tool to help sports scientists translate 
raw timing data into detailed mechanical outcomes 
through mathematical modeling (Jean-Benoit Morin 
et al. 2019; Samozino et al. 2016). To best of our 
knowledge, scientist, researchers, and coaches 
have been performing short sprints modeling 
using the built-in solver function of Excel (Microsoft 
Corporation, Redmond, Washington, United States) 
(J. B. Morin 2017; Jean-Benoit Morin and Samozino 
2019; Stenroth, Vartiainen, and Karjalainen 2020; 
Stenroth and Vartiainen 2020; Samozino et al. 
2016; Clark et al. 2017; Jean-Benoit Morin et al. 
2019), which makes the shorts package a major 
improvement in ease-of-use, speed, transparency, 
reproducibility, and more feature-rich model fitting.
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In the current paper, we will provide an explanation 
of one commonly used mathematical equation to 
model short sprints, modeling applications using 
the shorts package, issues that can arise during 
measurement and estimation, and potential solutions 
to those problems.

MATHEMATICAL MODEL

Short sprints have been modeled using the mono-
exponential equation (1) originally proposed by 
Furusawa, Hill, and Parkinson (1927), and more 
recently popularized by Clark et al. (2017), and 
Samozino et al. (2016). Equation (1) represents the 
function for instantaneous horizontal velocity v given 
the time t and two model parameters:

The parameters of the equation (1) are maximum 
sprinting speed (MSS; expressed in ms-1 and relative 
acceleration (TAU; expressed in s). Mathematically, 
TAU represents the ratio of MSS to initial acceleration 
(MAC; maximal acceleration, expressed in ms-2 (2).

Given the equation (1), TAU can be interpreted as 
the time required to reach a sprinting velocity equal 
to 63.2% of MSS. 

Although TAU is used in the equations, and later 
estimated, we prefer to use MAC instead since it is 
easier to grasp, particularly for less math inclined 
coaches.

By derivating equation (1), we can get the equation 
for horizontal acceleration (3).

By integrating equation (1), we can get the equation 
for distance covered (4).

Let’s consider four athletes with different levels of 
MSS (high versus low maximal sprinting speed) 
and MAC (high versus low maximal acceleration; as 
mentioned previously, using MAC is preferred over 
using TAU) (Table 1).

Figure 1 depicts distance, velocity, and acceleration 
over time (from 0 to 6 s).

Table 1. Four athletes with different MSS and MAC 
parameters.

Athlete MSS MAC TAU
Athlete A 12 10 1.20
Athlete B 12 6 2.00
Athlete C 8 10 0.80
Athlete D 8 6 1.33
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Plotting acceleration against velocity (Figure 2), we 
will get Acceleration-Velocity Profile, which is linear, 
according to the mathematical model. If the athlete’s 
body mass (kg) is known, as well as additional air 
resistance parameters (see Air resistance and the 
calculation of force and mechanical power section of 
this paper), Force-Velocity Profile can be estimated 
(see Force-Velocity profile section of this paper).

ESTIMATION USING {SHORTS} PACKAGE

Short sprints profiling is usually performed by: 
(1) measuring split times using timing gates (i.e., 
positioned at various distances, e.g., 5, 10, 20, 30, 
40 m), or (2) getting a velocity trace using a radar 
gun. Estimation of MSS and TAU parameters from 
equation (1) is performed in {shorts} package using 
non-linear least squares regression implemented in 
the nlsLM() function from the {minpack.lm} package 
(Elzhov et al. 2022).

Estimating short sprint parameters using timing gates 
split times

For timing gates split times, distance is a predictor, 
and time is the outcome variable. Thus, equation (4) 
becomes:

In equation (5), W represents Lambert’s W function 
(Goerg 2022). Researchers often incorrectly use the 
equation (4) (J. B. Morin 2017; Jean-Benoit Morin 
and Samozino 2019; Stenroth and Vartiainen 2020), 
in which the time is the predictor and distance is the 
outcome variable, instead of the statistically correct 
equation (5). This practice should be avoided 
because switching the predictor and outcome 
variables in the regression model might produce 
biased estimated parameters (Motulsky 2018, 341). 
These biases might not necessarily be significant 
with the short sprints profiling, but it is nevertheless 
a bad statistical practice.

Here is an example using a built-in dataset. We are 
going to filter out one athlete (e.g., John) with the 
help of the {tidyverse} (Wickham 2021) package 
and estimate MSS, TAU, and MAC parameters using 
the model_timing_gates() function:
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Maximal relative power (PMAX) from the output is 
estimated using (MSS×MAC)/4, disregarding the air 
resistance.

Besides providing residual standard error (RSE), 
{shorts} functions provide additional model fit 
estimators. Additional information can be gained by 
exploring the returned object, particularly the object 
returned from the nlsLM() function (i.e., by using the 
S3 summary() method). To extract estimated model 
parameters, use S3 coef() method.

require(shorts)
require(tidyverse)

# Load built-in dataset
data(split_times)

# Filter timing gates splits for John
john_TG_data <- split_times %>%
  filter(athlete == "John")

john_TG_data
#> # A tibble: 6 × 4
#>   athlete bodyweight distance     time
#>   <chr>        <dbl>    <dbl> <I<dbl>>
#> 1 John            75        5     1.20
#> 2 John            75       10     1.97
#> 3 John            75       15     2.66
#> 4 John            75       20     3.31
#> 5 John            75       30     4.59
#> 6 John            75       40     5.85

# Estimate John's MSS, TAU, MAC, and PMAX
m1 <- model_timing_gates(
  distance = john_TG_data$distance,
  time = john_TG_data$time
)

m1
#> Estimated model parameters
#> --------------------------
#>    MSS    TAU    MAC   PMAX 
#>  7.800  0.737 10.577 20.625 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE 
#>    0.0259    0.9998   -0.0405    0.0208    0.0405    0.0212 
#>       MAE      MAPE 
#>    0.0173    0.8584

plot(m1) + theme_bw(8)

To create a simple plot of the model, use the S3 
plot() method, which returns ggplot2 (Wickham, 
Chang, et al. 2022) object:



Once we have estimated MSS and MAC, we can use 
predict_XXX() family of functions to predict various 
relationships (i.e., time at distance, acceleration at 
distance, velocity at time, etc.):

Estimating short sprint parameters using the radar 
gun

Estimating the short sprint profile using radar gun 
data takes time as a predictor and velocity as the 
outcome variable. Estimation using radar gun data 
is implemented in the {shorts} package using 
model_radar_gun() function.

Here is an example using built-in dataset:

# Predict time at distance
predict_time_at_distance(
  distance = john_TG_data$distance,
  MSS = m1$parameters$MSS,
  MAC = m1$parameters$MAC
)
#> [1] 1.24 1.97 2.64 3.29 4.58 5.87
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There is the additional parameter in the output, 
TC, that is estimated using the model_radar_gun() 
function. The utility of this parameter is explained 
in the Problems with time sync with the radar gun 
section of this paper.

Both timing gates and radar gun models allow 
weighted non-linear regression. Weighting in 
regression is utilized when the observations have 
unequal error variance (Gelman, Hill, and Vehtari 
2020), which can happen due to instrumental error 
(e.g., a multiplicative error instead of additive error) 
or due to biological variability (e.g., higher split 
time variance on shorter distances versus longer 
distances). In this case, observations with higher 
error variance get lower weight when fitting the 
model (Gelman, Hill, and Vehtari 2020). According to 
Gelman, Hill, and Vehtari (2020), unequal variances 

# Load built-in dataset
data(radar_gun_data)

# Filter radar gun data for John
john_RG_data <- radar_gun_data %>%
  filter(athlete == "John")

head(john_RG_data)
#> # A tibble: 6 × 4
#>   athlete bodyweight  time velocity
#>   <chr>        <dbl> <dbl>    <dbl>
#> 1 John            75  0       0    
#> 2 John            75  0.01    0.075
#> 3 John            75  0.02    0.149
#> 4 John            75  0.03    0.222
#> 5 John            75  0.04    0.291
#> 6 John            75  0.05    0.367

# Estimate John's MSS, TAU, MAC, and PMAX
m2 <- model_radar_gun(
  velocity = john_RG_data$velocity,
  time = john_RG_data$time
)

m2
#> Estimated model parameters
#> --------------------------
#>       MSS       TAU       MAC      PMAX        TC 
#>  7.999887  1.068770  7.485133 14.970054 -0.000215 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE 
#>    0.0488    0.9994   -0.1715    0.1444    0.1715    0.0486 
#>       MAE      MAPE 
#>    0.0364       Inf

are not typically a significant issue for the goal of 
estimating regression parameters, but they can 
become more important when making predictions 
about individual observations. Further exploring 
the topic of unequal error variances is beyond the 
scope of this paper. However, the {shorts} package 
provides a weighting feature for potential research 
of this topic in the future.

Weighted non-linear regression is performed by 
setting the weights parameter. For example, we 
can give more weight to shorter distances or faster 
velocities:
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Air resistance and the calculation of force and 
mechanical power

To estimate force production at distance or time 
(using predict_force_at_distance() and predict_
force_at_time() functions), as well as power 
production (using predict_power_at_distance() and 
predict_power_at_time() functions), one needs to 
take into account the air resistance. Air resistance 
(measured in Newtons, N) is estimated using get_
air_resistance() function, which takes velocity, body 
mass (kg), body height (m), barometric pressure 
(Torr), air temperature (C°), and wind velocity (ms-1) 
as parameters (please refer to Arsac and Locatelli 
(2002), Samozino et al. (2016), and van Ingen 
Schenau, Jacobs, and de Koning (1991) for more 
information):

When estimating force and power, the air resistance 
parameters can be set using "...", which are 
forwarded to the get_air_resistance():

m2_weighted <- model_radar_gun(
  velocity = john_RG_data$velocity,
  time = john_RG_data$time,
  weights = 1 / (john_RG_data$velocity + 1)
)

m2_weighted
#> Estimated model parameters
#> --------------------------
#>        MSS        TAU        MAC       PMAX         TC 
#>  7.9999558  1.0693094  7.4814227 14.9627626  0.0000522 
#> 
#> Model fit estimators
#> --------------------
#>       RSE R_squared    minErr    maxErr maxAbsErr      RMSE 
#>    0.0170    0.9994   -0.1714    0.1447    0.1714    0.0486 
#>       MAE      MAPE 
#>    0.0364       Inf

The easiest way to get all kinematics and kinetics for 
short sprints is to use predict_kinematics() function:

Plotting the model predictions can be done once 
we convert data from wide to long with the help 
of ggplot2 (Wickham, Chang, et al. 2022), dplyr 
(Wickham, François, et al. 2022), and tidyr (Wickham 

get_air_resistance(
  velocity = 5,
  bodymass = 80,
  bodyheight = 1.85,
  barometric_pressure = 780,
  air_temperature = 20,
  wind_velocity = 0.5
)
#> [1] 6.1

# To calculate horizontal force produced
predict_force_at_distance(
  distance = john_TG_data$distance,
  MSS = m1$parameters$MSS,
  MAC = m1$parameters$MAC,
  # Additional parameters forwarded to 
get_air_resistance
  # Otherwise, defaults are used
  bodymass = john_TG_data$bodyweight,
  bodyheight = 1.85,
  barometric_pressure = 780,
  air_temperature = 20,
  wind_velocity = 0.5
)
#> [1] 157.3  68.4  36.8  24.4  17.1  15.9

df <- predict_kinematics(
  m1,
  max_time = 6,
  frequency = 100,
  # Additional parameters forwarded to 
get_air_resistance
  # Otherwise, defaults are used
  bodymass = john_TG_data$bodyweight[1],
  bodyheight = 1.85,
  barometric_pressure = 780,
  air_temperature = 20,
  wind_velocity = 0.5
)
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and Girlich 2022) packages (loaded already using 
the tidyverse (Wickham 2021) package):

These kinematic and kinetic variables are utilized in 
Force-Velocity profile estimation, which is covered 
later in this paper.

Utility Functions

Another valuable addition for sports scientists and 
coaches is the ability to determine the distances and 
times where 90% of maximum sprinting speed is 
reached, or where peak power is within 90% range. 
To identify these values, the {shorts} package 
comes with the find_XXX() family of functions:

variable_names <- colnames(df)

df <- pivot_longer(data = df, cols = -2) 
%>%
  mutate(name = factor(name, levels = var-
iable_names))

ggplot(df, aes(x = distance, y = value)) +
  theme_bw(8) +
  facet_wrap(~name, scales = "free_y") +
  geom_line(alpha = 0.7) +
  ylab(NULL) +
  xlab("Distance (m)")
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Force-Velocity Profile

To create Force-Velocity Profile (FVP) using single 
athlete estimated sprint model parameters (i.e., 
MSS and MAC), you can use the make_FV_profile() 
function. When estimating FVP, athlete body mass 
(kg) can be set using bodymass parameter, while 
the air resistance parameters can be set using "...", 
which are forwarded to the get_air_resistance() 
function. Details of the FVP method implemented in 

# Finds distance where 90% of maximum sprinting speed is reached
find_velocity_critical_distance(
  MSS = m1$parameters$MSS,
  MAC = m1$parameters$MAC,
  percent = 0.9
)
#> [1] 8.07

# Finds maximal power and distance (this time using air resistance)
find_max_power_distance(
  MSS = m1$parameters$MSS,
  MAC = m1$parameters$MAC,
  # Additional parameters forwarded to get_air_resistance
  # Otherwise, defaults are used
  bodymass = 80,
  bodyheight = 1.85,
  barometric_pressure = 780,
  air_temperature = 20,
  wind_velocity = 0.5
)
#> $max_power
#> [1] 1664
#> 
#> $distance
#> [1] 1.15

# Finds distance over 90% power range
find_power_critical_distance(
  MSS = m1$parameters$MSS,
  MAC = m1$parameters$MAC,
  # Additional parameters forwarded to get_air_resistance
  # Otherwise, defaults are used
  bodymass = 80,
  bodyheight = 1.85,
  barometric_pressure = 780,
  air_temperature = 20,
  wind_velocity = 0.5
)
#> $lower
#> [1] 0.452
#> 
#> $upper
#> [1] 2.51

the {shorts} package and the interpretation from a 
sprint training perspective are covered elsewhere 
(Thomas A. Haugen, Breitschädel, and Samozino 
2020; Jean-Benoit Morin and Samozino 2016; Jean-
Benoit Morin et al. 2019; Samozino et al. 2016).
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To plot FVP kinematics and kinetics (which are the 
same as generated by the predict_kinematics() 
function), use the S3 plot() function. FVP estimated 
kinetics are default plotted against velocity (on the 
x-axis).
plot(fvp) + theme_bw(8)
To plot FVP estimated kinetics against time, use type 
= "time" parameter:

PROBLEMS WITH ESTIMATION

There is a challenge when collecting sprint data 
that could substantially impact modeled outcomes. 
To ensure accurate parameter outcomes, the initial 
force production must be synced with the start time 
(Thomas A. Haugen, Breitschädel, and Samozino 
2020; Thomas A. Haugen, Breitschädel, and Seiler 
2019). Below we describe this challenge when using 
radar guns or timing gates and suggest potential 
solutions within the {shorts} package.

Problems with time sync with the radar gun

Time synchronization is one error in the modeled 
estimation using a radar gun. In theory, 
synchronization is ideal when a sprint is initiated at 
t=0 s (i.e., v(t=0)=0 ms-1). In practice, this is often not 
the case. This might happen when the measurement 
starts before the sprint starts. Although these data 

# To create Force-Velocity Profile
fvp <- make_FV_profile(
  MSS = m1$parameters$MSS,
  MAC = m1$parameters$MAC,
  bodymass = 80,
  # Additional parameters forwarded to get_air_resistance
  # Otherwise, defaults are used
  bodyheight = 1.85,
  barometric_pressure = 780,
  air_temperature = 20,
  wind_velocity = 0.5
)

fvp
#> Estimated Force-Velocity Profile
#> --------------------------------
#>      bodymass            F0        F0_rel            V0 
#>      80.00000     840.73446      10.50918       7.94658 
#>          Pmax Pmax_relative      FV_slope  RFmax_cutoff 
#>    1670.23989      20.87800      -1.32248       0.30000 
#>         RFmax           Drf        RSE_FV       RSE_Drf 
#>       0.58380      -0.11766       0.99481       0.00855

should be trimmed, the time variable might not be 
synchronized perfectly (i.e., sprint starts exactly at 
t=0 s) with the sprint initiation afterward.

The potential solution incorporated into the {shorts} 
package involves estimating the time correction 
(TC) parameter using equation (6). TC parameter 
serves as intercept, similar to linear regression, and 
allows the model to be fitted correctly in the scenario 
explained.

This model is incorporated in the model_radar_gun() 
function (see Estimating short sprint parameters 
using the radar gun), and TC is estimated in addition 
to MSS, MAC, and TAU parameters.

Problems at the start when using timing gates

Let us imagine we have two twin brothers with the 
same short sprint characteristics: MSS equal to 9 
ms-1 and MAC equal to 8 ms-2. Let us call them John 
and Jack. They perform 40 m sprints using timing 
gates set at 5, 10, 20, 30, and 40 m. The initial timing 
gate at the start (i.e., d=0 m) activates the timing 
system (i.e., when they cross the beam).

John represents the theoretical model, in which 
we assume that the initial force production and the 
timing initiation are perfectly synchronized. On the 

plot(fvp, "time") + theme_bw(8)
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other hand, Jack represents a practical model and 
decides to move slightly behind the initial timing gate 
(i.e., for 0.5 m) and use body rocking to initiate the 
sprint start. In other words, Jack uses a flying start, a 
common scenario when testing field sports athletes. 
Flying start distance is often recommended to avoid 
premature timing system triggering by lifting knees 
or swinging arms (Altmann et al. 2018, 2015, 2017; 
Thomas A. Haugen, Breitschädel, and Samozino 
2020; T. Haugen and Buchheit 2016).

Data for this scenario is generated using create_
timing_gates_splits() function:

split_times <- tibble(
  distance = c(5, 10, 20, 30, 40),
  john_time = create_timing_gates_splits(
    MSS = 9,
    MAC = 8,
    gates = distance
  ),
  jack_time = create_timing_gates_splits(
    MSS = 9,
    MAC = 8,
    gates = distance,
    FD = 0.5
  )
)

Here is a graphical representation of the sprint splits 
(please refer to the Supplemental Material for the R 
code):

We can see the differences in estimated MSS and 
MAC parameters using the following code. For 
better table output, we are going to use the kable()
function from the {knitr} package (Xie 2022b).
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MSS TAU MAC PMAX
John 9.00 1.12 8 18.0
Jack 8.59 0.61 14 30.1

As can be seen from the results, a flying start yields 
biased estimates, particularly for the TAU, MAC, and 
PMAX.

Simple Simulation

To explore this further, we have run a simple 
simulation by increasing Jack’s flying start distance 
from 0 to 1 m and depicting the estimated MSS, 
TAU, MAC, and PMAX parameters (please refer to 
the Supplemental Material for the R code).

john_profile <- model_timing_gates(
  distance = split_times$distance,
  time = split_times$john_time
)

jack_profile <- model_timing_gates(
  distance = split_times$distance,
  time = split_times$jack_time
)

sprint_parameters <- rbind(
  coef(john_profile),
  coef(jack_profile)
)

rownames(sprint_parameters) <- c("John", "Jack")

kable(sprint_parameters, digits = 2, booktabs = TRUE)
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As can be seen from the figure, MSS and TAU 
are underestimated, while MAC and PMAX are 
overestimated as the flying start distance increases.

Model residuals are also affected by the flying 
start distance. The shape of the distribution of the 
residuals depends on the number and splits utilized 
(e.g., 10, 20, 30, 40 m versus 5, 15, 30 m). However, 
here we can see the effect of the flying start distance 
on the model residuals per split distance utilized in 
our simple simulation:

Another way to visualize the effect of the flying start 
distance on split distance residuals can be found in 
the following figure:
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Any flying start with a difference between initial 
force production and start time can result in biased 
parameters and predictions. Since maximal sprint 
speed is difficult to improve, the effects of start 
inconsistencies can mask the effects of the training 
intervention. It is thus crucial to standardize the 
start when testing and implementing the following 
techniques when using the {shorts} package.

How to overcome missing the initial force production 
when using timing gates?

A potential solution is to use a correction factor - the 
recommendation in the literature is +0.5 s (Thomas 
A. Haugen, Breitschädel, and Seiler 2020, 2019). 
Interestingly, the average difference between timing 
gates and a block start for 40 m sprint time was 0.27 
s (Thomas A. Haugen, Tønnessen, and Seiler 2012). 
So, while a timing correction factor is warranted 
to avoid subsequent errors in estimates of kinetic 
variables (e.g., overestimate power), a correction 
factor that is too large will have the opposite effect 
(e.g., underestimate power).

Rather than providing apriori time correction from 
the literature, the {shorts} package provides 
an estimation of this parameter from the data 
provided, together with MSS and MAC. The same 
method is suggested by Stenroth, Vartiainen, and 
Karjalainen (2020), named the time shift method, 
and the estimated parameter is named the time 
shift parameter. We have named this parameter 
time correction (TC) to agree with the parameter 
introduced in the Problems with time sync with the 
radar gun section of this paper and the available 
literature. The model that implements the TC 
parameter is termed the estimated TC model.

When implementing time correction, equation (5) 
becomes:

In {shorts} package, TC model is implemented 
in the model_timing_gates_TC() function. Here is 
how we can estimate Jack parameters using fixed 
time corrections (e.g., +0.3 and +0.5 s) or using 
estimated TC model:
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athlete MSS TAU MAC PMAX TC
John 9.00 1.12 8.00 18.0

Jack - No corrections 8.59 0.61 14.00 30.1
Jack - Fixed TC (+0.3s) 9.04 1.13 8.02 18.1
Jack - Fixed TC (+0.5s) 9.61 1.61 5.98 14.4

Jack - Estimated TC 8.97 1.05 8.51 19.1 0.26

jack_profile_fixed_time_short <- model_timing_gates(
  distance = split_times$distance,
  time = split_times$jack_time + 0.3
)

jack_profile_fixed_time_long <- model_timing_gates(
  distance = split_times$distance,
  time = split_times$jack_time + 0.5
)

jack_profile_time_estimated <- model_timing_gates_TC(
  distance = split_times$distance,
  time = split_times$jack_time
)

jack_parameters <- full_join(
  rbind(
    data.frame(athlete = "John", t(coef(john_profile))),
    data.frame(athlete = "Jack - No corrections", t(coef(jack_profile))),
    data.frame(athlete = "Jack - Fixed TC (+0.3s)", t(coef(jack_profile_fixed_time_
short))),
    data.frame(athlete = "Jack - Fixed TC (+0.5s)", t(coef(jack_profile_fixed_time_
long)))
  ),
  data.frame(athlete = "Jack - Estimated TC", t(coef(jack_profile_time_estimated)))
)

kable(jack_parameters, digits = 2, booktabs = TRUE)

In Jack’s case, both +0.3s fixed time correction 
and estimated TC model yield parameters closer 
to John’s (i.e., true parameters). We have used 
these models in a retrospective pilot study (Vescovi 
and Jovanović 2021), demonstrating statistically 
significant differences in estimated FVP parameters.

Instead of using time correction as a simple intercept 
in equation (7), we can estimate the flying distance 
(FD) using the following equation:

We have named this model estimated FD model, 
and in the {shorts} package it is implemented in the 
model_timing_gates_FD() function. Here is how we 
can estimate Jack parameters using estimated FD 
model:
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athlete MSS TAU MAC PMAX TC FD
John 9.00 1.12 8.00 18.0

Jack - No corrections 8.59 0.61 14.00 30.1
Jack - Fixed TC (+0.3s) 9.04 1.13 8.02 18.1
Jack - Fixed TC (+0.5s) 9.61 1.61 5.98 14.4

Jack - Estimated TC 8.97 1.05 8.51 19.1 0.26
Jack - Estimated FD 9.00 1.12 8.00 18.0 0.5

jack_profile_FD <- model_timing_gates_FD(
  distance = split_times$distance,
  time = split_times$jack_time
)

jack_parameters <- full_join(
  jack_parameters,
  data.frame(athlete = "Jack - Estimated FD", t(coef(jack_profile_FD)))
)

kable(jack_parameters, digits = 2, booktabs = TRUE)

As can be seen from the results, the estimated FD 
model correctly estimated Jack’s sprint parameters. 
There are a few issues with this model definition. 
Besides being novel and still not validated with actual 
data, the estimated FD model has three parameters 
to estimate, which implies that at least four sprint 
splits are needed. This imposes practical limitations 
since acquiring five timing gates (one for a start 
and four for splits) might be practically troublesome 
(which is also the case with the estimated TC 
model). In addition, the estimated FD model can be 
ill-defined in scenarios involving reaction time and 
no actual flying sprint involved. This is often the case 
when a gunshot is used to initiate the timing system.

Simple simulation using proposed models

In this section, we examine how these models (no 
correction, fixed time correction, estimated TC, and 
estimated FD) perform using simulated data with 
varying flying start distances (please refer to the 
Supplemental Material for the R code), assuming 
true MSS equal to 9 ms-1, and MAC equal to 8 ms-2 

(i.e., sprint characteristics of Jack and John). Timing 
gates are set at 5, 10, 20, 30, and 40 m.

As can be seen from the following figure, the 
estimated TC model estimates sprint parameters 
with increasing bias as the flying distance increases. 
In contrast, the estimated FD model estimates sprint 
parameters perfectly. If correct TC is not applied, 
fixed time correction models have a much larger 
bias. This value depends on sprint characteristics, 
the flying distance, and timing gate splits. It is thus 
impossible to provide a single fixed time correction 
value that will serve its corrective purpose across 
different scenarios and athletes measured.
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The following figure depicts residuals across split 
distances for each simulated flying start distance. As 
can be seen, estimated TC and FD models perform 
much better than the no correction and fixed time 
correction models.



18Copyright: © 2021 by the authors. Licensee IUSCA, London, UK. This article is an
open access article distributed under the terms and conditions of the

Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

International Journal of Strength and Conditioning. 2022 {shorts}: An R Package for Modeling Short Sprints

The results of this simple simulation demonstrate that 
the estimated TC and FD models represent sound 
improvements in parameter estimation and model fit 
compared to the no corrections model and fixed TC 
models when attempting to overcome the flying start 
issues. A more detailed simulation study is ongoing, 
and the results will be reported in another paper.

CROSS-VALIDATION

To estimate parameter stability, model over-fitting, 
and performance on unseen data, {shorts} model 
functions come with implemented leave-one-out 
cross-validation (LOOCV) for the timing gates models 
and n-fold cross-validation (CV) for the radar gun 
models (James et al. 2017; Jovanović 2020; Kuhn 
and Johnson 2018). LOOCV involves a simple yet 
powerful procedure of removing each observation, 
rebuilding the model, and making predictions for 
that removed observation. This process is repeated 

for each observation in the model dataset. LOOCV 
allows one to check estimated parameters’ stability 
and model performance on unseen data.
Let’s perform LOOCV using Jack’s data and the 
estimated TC model:

The model print output provides training dataset 
estimates and model performance, as well as 
LOOCV estimates and model performance.

Next, we plot estimated parameters across LOOCV 
folds (please refer to the Supplemental Material for 
the R code):

jack_LOOCV <- model_timing_gates_TC(
  distance = split_times$distance,
  time = split_times$jack_time,
  LOOCV = TRUE
)
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Here is the plot of the training and LOOCV residuals:

As expected, the model has more issues predicting 
unseen split times for short or long distances. Please 
note that since LOOCV removes one observation, if 
the model estimates three parameters, then at least 
five observations are needed since we need to 
ensure the model can be estimated once a single 
observation is removed.

Since there are much more observations in the 
radar gun data, n-fold CV is implemented instead of 
LOOCV. CV procedure randomly splits the dataset 
into n-folds, leave one fold-out for prediction, and 
makes a model using the remaining folds. This is 
then repeated for all the folds.

# Estimate John's MSS, TAU, MAC, and PMAX
m2_CV <- model_radar_gun(
  velocity = john_RG_data$velocity,
  time = john_RG_data$time,
  # Eneter number of folds
  CV = 10
)

# Estimated parameters for each fold
m2_CV$CV$parameters
#> # A tibble: 10 × 5
#>      MSS   TAU   MAC  PMAX         TC
#>    <dbl> <dbl> <dbl> <dbl>      <dbl>
#>  1  8.00  1.07  7.49  15.0 -0.000321 
#>  2  8.00  1.07  7.49  15.0 -0.000348 
#>  3  8.00  1.07  7.49  15.0 -0.000363 
#>  4  8.00  1.07  7.48  15.0 -0.0000164
#>  5  8.00  1.07  7.48  15.0 -0.0000593
#>  6  8.00  1.07  7.49  15.0 -0.000281 
#>  7  8.00  1.07  7.48  15.0  0.0000791
#>  8  8.00  1.07  7.49  15.0 -0.000298 
#>  9  8.00  1.07  7.49  15.0 -0.000417 
#> 10  8.00  1.07  7.48  15.0 -0.000108
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EXAMPLE ANALYSIS

Let us use real-world data to demonstrate the 
functionalities of the {shorts} package. We will use 
the dataset from Usain Bolt’s performance at the 
IAAF World Championship finals in London, 2017.

Since reaction time enters the splits, we want to 

see how that will affect the model estimates, mainly 
if the estimated time correction model will pick up 
reaction time.

For the sake of this analysis, only 10 m splits over 60 
m race distance are used.

bolt_reaction_time <- 0.183

bolt_distance <- c(10, 20, 30, 40, 50, 60)
bolt_time <- c(1.963, 2.983, 3.883, 4.763, 5.643, 6.493)

# No corrections model
bolt_m1 <- model_timing_gates(
  distance = bolt_distance,
  time = bolt_time
)

# Model with reaction time as fixed time correction
bolt_m2 <- model_timing_gates(
  distance = bolt_distance,
  time = bolt_time - bolt_reaction_time
)

# Model with estimated time correction
bolt_m3 <- model_timing_gates_TC(
  distance = bolt_distance,
  time = bolt_time
)

# Model with flying distance correction
# THIS CANNOT BE ESTIMATED SINCE IT IS ILL-DEFINED MODEL
# bolt_m4 <- model_timing_gates_FD(
#   distance = bolt_distance,
#   time = bolt_time
# )

bolt_model <- full_join(
  rbind(
    data.frame(model = "No correction", t(coef(bolt_m1))),
    data.frame(model = "No correction - RT", t(coef(bolt_m2)))
  ),
  data.frame(model = "Estimated TC", t(coef(bolt_m3)))
)

kable(bolt_model, digits = 2, booktabs = TRUE)
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model MSS TAU MAC PMAX TC
No correction 12.1 1.56 7.77 23.6

No correction - RT 11.7 1.21 9.74 28.6
Estimated TC 11.7 1.20 9.76 28.6 -0.18

Here is the model estimate of the time and distance it 
takes for Bolt to reach 99% of MSS. These estimated 
times and distances represent true time and distance 
when the sprint is initiated at t=0 s and d=0 m.

bolt_model <- bolt_model %>%
  group_by(model) %>%
  mutate(
    `99% MSS (m)` = find_velocity_criti-
cal_distance(
      MSS = MSS, MAC = MAC,
      percent = 0.99
    ),
    `99% MSS (s)` = find_velocity_criti-
cal_time(
      MSS = MSS, MAC = MAC,
      percent = 0.99
    )
  )

kable(bolt_model[c(1, 7, 8)], digits = 2, 
booktabs = TRUE)

model 99% MSS (m) 99% MSS (s)
No correction 68.7 7.20
No correction 

- RT 51.1 5.55

Estimated TC 51.0 5.54

CONCLUSION

Which model should be used? Although providing 
novel theoretical models in this paper, we 
acknowledge the need for validating them in 
practice against gold-standard methods, assessing 
their agreement, and their power in detecting 
and adjusting for timing inconsistencies. A more 
thorough theoretical simulation study is currently in 
development, intending to explore the behavior of 
these models under different scenarios.

We hope that the {shorts} package will help fellow 
sports scientists and coaches explore short sprint 
profiles and help in driving research, particularly 
in devising measuring protocols that are sensitive 
enough to capture training intervention changes but 
also robust enough to take into account potential 

sprint initiation and timing inconsistencies.

SUPPLEMENTAL MATERIAL

The R Markdown (Xie 2022a; Allaire et al. 2022; Xie, 
Allaire, and Grolemund 2018; Xie, Dervieux, and 
Riederer 2020) source code for the paper can be 
found on the GitHub repository: https://github.com/
mladenjovanovic/shorts-paper.
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